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Abstract 

Background:  Deep learning applied to ultrasound (US) can provide a feedback to the sonographer about the correct 
identification of scanned tissues and allows for faster and standardized measurements. The most frequently adopted 
parameter for US diagnosis of carpal tunnel syndrome is the increasing of the cross-sectional area (CSA) of the 
median nerve. Our aim was to develop a deep learning algorithm, relying on convolutional neural networks (CNNs), 
for the localization and segmentation of the median nerve and the automatic measurement of its CSA on US images 
acquired at the proximal inlet of the carpal tunnel.

Methods:  Consecutive patients with rheumatic and musculoskeletal disorders were recruited. Transverse US images 
were acquired at the carpal tunnel inlet, and the CSA was manually measured. Anatomical variants were registered. 
The dataset consisted of 246 images (157 for training, 40 for validation, and 49 for testing) from 103 patients each 
associated with manual annotations of the nerve boundary. A Mask R-CNN, state-of-the-art CNN for image semantic 
segmentation, was trained on this dataset to accurately localize and segment the median nerve section. To evaluate 
the performances on the testing set, precision (Prec), recall (Rec), mean average precision (mAP), and Dice similarity 
coefficient (DSC) were computed. A sub-analysis excluding anatomical variants was performed. The CSA was auto-
matically measured by the algorithm.

Results:  The algorithm correctly identified the median nerve in 41/49 images (83.7%) and in 41/43 images (95.3%) 
excluding anatomical variants. The following metrics were obtained (with and without anatomical variants, respec-
tively): Prec 0.86 ± 0.33 and 0.96 ± 0.18, Rec 0.88 ± 0.33 and 0.98 ± 0.15, mAP 0.88 ± 0.33 and 0.98 ± 0.15, and DSC 
0.86 ± 0.19 and 0.88 ± 0.19. The agreement between the algorithm and the sonographer CSA measurements was 
excellent [ICC 0.97 (0.94–0.98)].
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Background
Carpal tunnel syndrome (CTS) is commonly encountered 
in rheumatology daily practice, and it is a frequent condi-
tion also in other healthcare settings such as orthopedics, 
neurology, physiatry, and primary care [1]. It is defined 
as the constellation of signs and symptoms due to the 
compression of the median nerve while it passes through 
the carpal tunnel [2]. Even if the diagnosis relies on clini-
cal history and physical examination, confirmatory tests 
such as nerve conduction studies and ultrasound (US) are 
often used [2].

In particular, US is helpful in assisting the diagnosis of 
CTS [3–5], and it adds value to electrodiagnosis, being 
capable of identifying pathological median nerve swell-
ing as well as the cause of the compression of the median 
nerve (e.g., flexor tendons tenosynovitis, wrist synovitis, 
tophi, or persistent median artery thrombosis) [6–9].

The most frequently adopted parameter for US diag-
nosis of CTS is the increasing of the cross-sectional 
area (CSA) of the median nerve measured at the proxi-
mal inlet of the carpal tunnel (at the level of the pisiform 
bone) [10, 11].

Some of the limitations to the spread of US in rheu-
matology are its operator dependency, the need for a 
supervised training, and the inter-observer variability in 
obtaining standardized measurements [12].

Recently, artificial intelligence (AI), and in particular 
deep learning (DL), applied to US has demonstrated to be 
a possible solution to some of these issues. In fact, it can 
provide an immediate feedback to the beginner sonogra-
pher about the correct identification of scanned tissues 
and allows for faster and more standardized measure-
ments [13–17].

In spite of such promising results, only a relatively 
small number of studies have applied DL to US in the 
field of rheumatic and musculoskeletal diseases [18–22], 
and the contributions focusing on its application on the 
US assessment of CTS are even fewer [23, 24].

DL is a class of AI algorithms that is inspired by the 
structure of the human brain, capable of autonomous 
learning and composed by many layers of artificial neu-
rons that extract higher-level features from data [25]. 
Convolutional neural networks (CNNs) are DL algo-
rithms designed for processing structured arrays of data 
such as images, suited to solve various image analy-
sis tasks, such as object classification, detection, and 

segmentation, in a variety of different fields, including 
medical image analysis [25, 26].

The main aim of the present study was to develop an 
end-to-end CNN, i.e., Mask R-CNN [27], for the localiza-
tion and segmentation of the median nerve and the auto-
matic measurement of its CSA on US images acquired at 
the inlet of the carpal tunnel.

Materials and methods
US image acquisition, interpretation, and annotation
Consecutive patients with rheumatic and musculoskele-
tal disorders were recruited at the Rheumatology Unit of 
“Carlo Urbani” Hospital in Jesi, Italy. Patients < 18 years 
old were excluded. The study was conducted in accord-
ance with the Helsinki Declaration and was approved 
by the local ethics committee (Comitato Etico Regione 
Marche, number 262). All patients signed informed 
consent.

Basic clinical and demographic data were collected. 
The US assessment was performed by one of three 
sonographers with different degrees of experience in 
musculoskeletal US (G.Sa.: 1 month with a dedicated 
intensive training; G.Sm.: 4 years; E.Fi.: more than 20 
years of experience) with a MyLab Class C (Esaote Spa, 
Genoa, Italy) US system equipped with a linear 6–18-
MHz probe.

Patients were seated in a comfortable position, with 
the forearm resting supine on the examination bed and 
fingers in neutral position. Each wrist was scanned in 
transverse views according with the 2017 EULAR stand-
ardized procedures for US imaging in rheumatology [28]. 
Representative images were acquired bilaterally at the 
carpal tunnel proximal inlet (at the level of the pisiform 
bone). The sonographer measured the CSA by tracing a 
continuous line within the hyperechogenic boundary of 
the nerve (along the internal margin of the epineurium). 
The presence of the following anatomical variants was 
registered: bifid median nerve, persistent median artery, 
and accessory muscles within the carpal tunnel. In the 
case of the bifid median nerve, the CSA was measured 
summing the areas of both branches.

All the images were reviewed by the expert sonogra-
pher (E.Fi.), and images not considered informative due 
to insufficient quality were excluded. The boundary of the 
nerve was manually annotated in each image of the data-
set by the same operator (G.Sa.)

Conclusions:  The developed algorithm has shown excellent performances, especially if excluding anatomical vari-
ants. Future research should aim at expanding the US image dataset including a wider spectrum of normal anatomy 
and pathology. This deep learning approach has shown very high potentiality for a fully automatic support for US 
assessment of carpal tunnel syndrome.
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CNN algorithm training and training strategy
In this work, Mask R-CNN [27] was trained for median 
nerve semantic segmentation from US images. Mask 
R-CNN integrates object detection task, where the 
goal is to detect object class along with bounding box 
prediction in an image, and consequently semantic 
segmentation task, which classifies each pixel into pre-
defined categories. Thus, it enables to segment precisely 
median nerve boundaries, once learned its location in 
the US image.

This DL algorithm mainly works in two stages: first, it 
generates proposals about the regions where the target 
object might be based on the input image; second, it pre-
dicts the object class and its location refining the bound-
ing box and from that its contours generating a mask in 
pixel level of the object based on the first stage proposal. 
A schematic representation of this end-to-end deep 
learning algorithm is shown in Fig. 1.

More specifically, we implemented a ResNet101 [29] 
combined with the feature pyramid network (FPN) 
[30], as backbone, to extract features from the input 
image at multiple levels. Subsequently, the region pro-
posal network (RPN) generates proposals, then selected 
and processed by the ROIAlign layer that resizes them 
to a constant output dimension before passing them to 
the Mask R-CNN heads [27]. From the original Mask 
R-CNN implementation, we increased the output reso-
lution of the segmentation head using three transposed 
convolutions with 256 2 × 2 filters and activated with 

the rectified linear unit (ReLU), instead of only one, to 
cope with the fragmented and low-contrasted edges of 
the median nerve.

The dataset consisted of 246 images from 103 
patients, associated with manual annotations, which 
were used as ground truth to teach the algorithm to 
correctly localize and segment the median nerve. For 
this purpose, the dataset was split over patients in three 
parts: 157 images from 64 subjects for training, 40 
images from 16 subjects for validation, and 49 images 
from 23 subjects for testing.

From the original size of 606 × 468 pixels, each US 
image and the corresponding annotation mask were 
resized to 512 × 512 pixels and zero-padded at right-
most and bottom-most edges to get squared images with 
a size multiple of 32, as required by the FPN, while pre-
serving the original aspect ratio.

To make up for the relatively small size of our dataset, 
weights computed on the COCO dataset [31] were used 
to initialize all layers of the model except for the input 
layers of the network heads and during training on-the-
fly data augmentation was performed by randomly scal-
ing in the range of (0.8, 1.2) and random translating in 
the range (− 0.2, 0.2) in both directions and perform-
ing random rotation between − 10 and 10 and shearing 
between − 2 and 2.

The training was performed using the Stochastic Gra-
dient Descent as an optimizer for 150 epochs with an ini-
tial learning rate of 0.001 and momentum of 0.9.

Fig. 1  Mask R-CNN is a CNN made of backbone (composed by a ResNet101 and a feature pyramid network (FPN)), a region proposal network 
(RPN), ROIAlign, and three heads, for classification, bounding-box regression, and segmentation
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A total of 256 anchors per image was used, with vary-
ing sizes (32, 64, 128, 256, and 512) and aspect ratios 
(1:1, 2:1, 1:2). These values were chosen considering the 
median nerve section dimension. The ROIAlign resized 
proposals to a fixed size of 14 × 14. Hence, the output 
of the proposed segmentation had a resolution of 112 × 
112.

The model was trained using a multi-task cross-entropy 
loss function combining the loss of classification, locali-
zation, and segmentation mask: L = Lcls + Lbbox + Lmask, 
where Lcls, Lbbox, and Lmask are respectively class, bound-
ing box, and mask losses [27].

Performance metrics
We considered a true positive (TP) prediction if the pre-
dicted bounding box overlapped the ground truth for at 
least 70% and had confidence higher than 0.98. Other-
wise, the nerve detection was considered as false posi-
tive (FP). We considered a false negative (FN) when no 
bounding box was predicted at all.

To evaluate the performance in median nerve localiza-
tion, precision (Prec) and recall (Rec) were computed as 
follows:

The mean average precision (mAP), which represents 
the average of the area under the recall-precision curve, 
was also computed.

The median nerve segmentation performance was 
measured using the Dice similarity coefficient (DSC), 
which is defined as follows:

where Agt and Amask are the ground truth and predicted 
segmentation, respectively. When computing the DSC, 
only TPs were considered.
Prec, Rec, mAP, and DSC values can range between a 

minimum of 0 and a maximum of 1.
We also calculated the percentage of the images of the 

testing set in which the algorithm correctly identified 
only the true median nerve (TP prediction in the absence 
of a concomitant FN prediction in the same image).

CSA automatic measurement
The CSA was automatically calculated from the median 
nerve section predicted by the algorithm, knowing the 
dimensions of a single pixel (0.062  mm × 0.062  mm) 
composing the US images. The CSA was calculated only 
on TP predictions, excluding images with FP predictions.

Prec = TP
TP+FP

Rec = TP
TP+FP

DSC =
2×
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Statistical analysis
The results are expressed as number and/or correspond-
ing percentage for qualitative variables and as mean and 
standard deviation (SD) for quantitative variables. The 
chi-square test and the Mann-Whitney test were used 
to compare the qualitative and quantitative variables, 
respectively. The agreement in the CSA measurements 
between the operator (i.e., the gold standard) and the 
algorithm was calculated using a two-way mixed-effects 
intraclass correlation coefficient (ICC) with 95% confi-
dence interval (CI).

The ICC is regarded as excellent if above 0.9, as good if 
between 0.75 and 0.9, as fair if between 0.4 and 0.75, and 
as poor if below 0.4.

Results
Patient characteristics
A total of 103 rheumatic patients were consecutively 
included in this single-center and cross-sectional study. 
Table  1 shows the main demographic characteristics of 
the participants.

Twenty-two out of 103 patients (21%) had a clinical 
diagnosis of CTS (10 unilateral, 13 bilateral).

Performance metrics in the identification of the median 
nerve
The algorithm made 43 correct predictions (TP), two FN 
predictions, and six FP predictions.

Table  2 shows the results of the performance metrics 
for the localization (Prec, Rec, and mAP) and the segmen-
tation (DSC) of the median nerve.

Table 1  Demographic and clinical characteristics of 103 patients 
with rheumatic and musculoskeletal disorders included

Abbreviations: BMI body mass index, CPPD calcium pyrophosphate deposition 
disease, SD standard deviation

Variable Value

Age (years), mean ± SD 56 ± 13

Male/female ratio 1:1.8

BMI (kg/m2), mean ± SD 26.1 ± 4.5

Disease, n (%)

  Rheumatoid arthritis 23 (22%)

  Osteoarthritis 19 (18%)

  Psoriatic arthritis 18 (17%)

  Fibromyalgia 11 (11%)

  Systemic sclerosis 6 (6%)

  Systemic lupus erythematosus 5 (5%)

  CPPD 4 (4%)

  Sjogren’s syndrome 3 (3%)

  Polymyalgia rheumatica 3 (3%)

  Others 11 (11%)
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Overall, the algorithm correctly identified and seg-
mented the median nerve in 41 out of 49 images (83.7%) 
(Fig. 2).

After a revision by the expert sonographers of the cause 
of the errors made by the algorithm, it was noted that the 
algorithm underperformed when it was asked to inter-
pret images with anatomical variants (i.e., bifid median 
nerve or prominent persistent median artery). A sample 
of US images of the testing set containing anatomical var-
iants is represented in Fig. 3.

Thus, we performed a sub-analysis of the performance 
metrics excluding such relatively rare anatomical vari-
ants from the testing set (n = 6). These results are shown 
in Table 3. In such sub-analysis, the algorithm correctly 
identified and segmented the median nerve in 41 out of 
43 images (95.3%). In both images with incorrect pre-
dictions, the algorithm considered a nearby tendinous 
structure as another branch of the median nerve (i.e., the 

flexor carpi radialis tendon in one image and one of the 
finger flexor tendons in the other). These incorrect pre-
dictions may be related to the fact that in the transverse 
US view, the tendons show an oval shape, which is very 
similar to the one of the median nerve.

We trained and tested the algorithm using TensorFlow on 
a GPU GeForce RTX 2080, and the average inference time 
was 1.7 s, which could be further reduced with computa-
tional resources higher than the ones available for our study.

CSA automatic measurement
The average CSA measured by the operator was 10.4 ± 
4.6 mm2 while the average CSA automatically calculated 
by the algorithm was 10.4 ± 4.3 mm2, with no significant 
difference (p = 0.88).

The agreement between the automatic algorithm meas-
urement and the sonographer manual measurement of 
the CSA was excellent [ICC 0.97 (95% CI 0.94–0.98)].

Discussion
In the last decades, US has largely demonstrated its use-
fulness in several aspects of the management of patients 
with rheumatic diseases [32–34]. It is safe, cost-effec-
tive, readily accessible, and generally well tolerated by 
the patients. Despite all the above, US is still far from 
being systematically adopted in rheumatology daily 
practice. This is largely due to its operator dependency 

Table 2  Performance metrics of the convolutional neural 
network (CNN) algorithm for the localization and segmentation 
of the median nerve

Results are expressed as mean ± standard deviation

DSC Dice similarity coefficient, mAP mean average precision, Prec precision, Rec 
recall

Prec Rec mAP DSC

49 testing images 0.86 ± 0.33 0.88 ± 0.33 0.88 ± 0.33 0.86 ± 0.19

Fig. 2  Correct localization and segmentation of the median nerve. Transverse scans acquired at the carpal tunnel proximal inlet in two patients 
(A-A′ and B-B′) showing in the left panels (A and B) the manual annotations of the boundary of the median nerve made by the operator (arrows) 
and in the right panels (A′ and B′) the corresponding predictions made by the algorithm (open arrows). p, pisiform bone
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and the intrinsic difficulties in standardizing measure-
ments which may undermine its reproducibility.

DL has the potential to fill these gaps, facilitating a 
self-teaching approach not requiring continuous super-
vision by an expert sonographer and increasing stand-
ardization and reproducibility.

DL application to US is of particular interest in the 
setting of CTS assessment. In fact, CTS is a frequent 
condition encompassing many different medical spe-
cialties such as rheumatology, orthopedics, neurology, 
physiatry, and primary care. There is a growing body 
of evidence highlighting the value of US detection of 
the thickening of the median nerve (measured with the 
CSA obtained at the proximal inlet of carpal tunnel) as 
a confirmatory diagnostic test on top of clinical exami-
nation. Moreover, in patients with CTS, differently 
from electrophysiology, US can demonstrate the cause 

of the compression of the median nerve (e.g., tenosyno-
vitis) [7].

However, despite this, US is struggling to find its 
place in the diagnostic work-up, being rarely pre-
ferred to or carried out together with electrodiagnos-
tic tests. This may be partially due to the lack of the 
competencies needed to perform and interpret an US 
examination at the carpal tunnel level among different 
specialists facing CTS.

The correct identification of the median nerve is the 
first step for any beginner sonographer that approaches 
CTS assessment. The distinction of the median nerve 
from the finger flexor tendons is not an easy task due 
to the similar round shape on the transverse view. 
Sonographic criteria for the identification of peripheral 
nerve morphology were proposed by Silvestri et al. [35]. 
The authors stated that on transverse scans, peripheral 
nerves, including the median nerve, are characterized 
by the presence of multiple rounded hypoechoic areas 
with a homogeneous hyperechoic background (i.e., fas-
cicular pattern). The fascicular pattern characteristic of 
nerves may be differentiated from tendons’ fibrillar pat-
tern (linear hypo- and hyperechoic areas on transverse 
scan).

Such pattern recognition is a well-suited task for 
DL. Thus, we proposed an end-to-end DL approach to 
median nerve segmentation from US images acquired 
into daily clinical practice.

Fig. 3  Representative images of incorrect predictions. Transverse scans acquired at the carpal tunnel proximal inlet in two patients showing 
the correct identification of only one branch (open arrow) of a bifid median nerve (arrows) (A-A′) and the wrong inclusion of an adjacent vessel 
(arrowhead) in the prediction of the median nerve (asterisk) (B-B′). p, pisiform bone

Table 3  Performance metrics of the convolutional neural 
network (CNN) algorithm for the localization and segmentation 
of the median nerve in images without anatomical variants (i.e., 
bifid median nerve or prominent persistent median artery)

Results are expressed as mean ± standard deviation

DSC Dice similarity coefficient, mAP mean average precision, Prec precision, Rec 
recall

Prec Rec mAP DSC

43 testing images 0.96 ± 0.18 0.98 ± 0.15 0.98 ± 0.15 0.88 ± 0.19
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Our results show that the developed CNN algorithm 
is accurate in the identification and segmentation of 
median nerve on transverse US images acquired at the 
proximal inlet of the carpal tunnel.

If implemented on US machines, it would offer an 
almost real-time automatic feedback to the beginner 
sonographer approaching CTS US, avoiding the need of 
continuous supervision by an expert sonographer.

Furthermore, the present CNN algorithm is not only 
useful for the unexperienced sonographer. We dem-
onstrated that the agreement between the automated 
measurement and the manual measurement of the CSA 
was excellent. Such result has relevant implications, 
allowing for a fast, accurate, and reproducible auto-
mated measurement of CSA that would be an upgrade 
even for expert sonographers if implemented on the US 
machine. In fact, the manual measurement of the CSA 
is time-consuming and can increase both the intra- and 
inter-reader variability.

The developed algorithm, even though almost perfect 
in normal anatomy images analysis, has demonstrated 
a sub-optimal performance when asked to interpret US 
images with relatively infrequent anatomical variants. 
In particular, a bifid median nerve has been previously 
found in 15–18% of patients by US [36]. This represents 
a relevant aspect to keep in mind when interpreting the 
results of the present study. In fact, the impact of dif-
ferent anatomical variants on the performances of the 
algorithm may be the main obstacle to the immediate 
application of this software in clinical practice. Thus, 
future research should focus on the expansion of the 
dataset with US images encompassing a wider spec-
trum of normal anatomy at the carpal tunnel level in 
order to improve the algorithm performances and its 
generalization.

Our study has some limitations. First, the dataset is 
relatively small, thus not encompassing the entire spec-
trum of the possible anatomical variants and pathologic 
changes at the carpal tunnel level. Second, the US images 
were obtained with a high-end equipment; therefore, 
our results may not be generalizable if low-quality US 
machines/low-frequency probes are used. Moreover, 
the algorithm was developed and tested with US images 
considered of sufficient quality; thus, such a quality level 
represents a pre-requisite for this algorithm application. 
Finally, the single-center design of the study may further 
limit the generalizability of our results.

Conclusions
In the present study, we developed a CNN algorithm 
for the localization and segmentation of the median 
nerve and for the automatic measurement of its CSA 
on US images acquired at the proximal inlet of the 

carpal tunnel. Such algorithm has shown excellent per-
formances, even though future research should aim at 
expanding the US images dataset in order to further 
improve its performance in the presence of anatomi-
cal variants. This DL approach has shown very high 
potentiality for a fully automatic US support for CTS 
evaluation.
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